
Exploring Motion and Math (Distance = Rate * Time)Basic Math/Physics
Basic Math/Basic Physics (* Draft 2011-03-06)
[This document is held on the milagrosoft.com web site and is updated periodically there. Other 
tutorials on that site related to this one are: TrigBasics.pdf ] 

 Exploring Motion and Math (Distance = Rate * Time) 
Pondering on my physics book (Halliday), I just realized what the author had been saying all along 
about the possibility of the breakup of motion corresponding to various causes. That led me to look 
at the simplest equations of motion in hopes of visualizing what led to such an equation as: 
Distance traveled = initial velocity * time + 1/2 * acceleration * time2

By drawing some pictures I hoped to convince myself that this equation was understandable 
enough to be able to use it in further investigations. Maybe the drawing below will enable you to 
do the same (unless you already have this down cold)! Just jump in and all will become clear. [rob 
r.]. Note: An addendum to this note discusses Harmonic averages that are useful to find average 
rates. 

 Visualizing Distance in terms of Time, Velocity, and Acceleration
Suppose I’m driving my Ferrari Targa up the on-ramp heading for a freeway, and initially moving 
at a steady 40 mph. Suppose I want to accelerate and get up to 60 mph as I enter freeway traffic. If 
I accelerate at 5 mph per second, it will take me 4 seconds to get up to 60 mph. How far have I 
traveled during this 4 seconds? That amounts to calculating a distance over a time where the ve-
locity is not constant and that’s what I wanted to better understand. See the diagram below for a 
picture of this. I will use these numbers to show how to think about the calculation of the distance 
covered during this on-ramp trip. Solving this puzzle will reveal an insight into the calculation of 
other equations of motion and even an insight into Kinetic Energy (energy of motion). 

The take home idea is that my initial 40 mph can be treated as a constant, 
separate but simultaneous, to the accelerated motion that increases the 40 
mph up to a final velocity of 60 mph. That separation, that decomposition 
into different causes, is the key to understanding the connection between 
distance covered, time, velocity, and acceleration. 

I will use English units of miles, hours, feet, and seconds. The text in square brackets will be the 
units the variables are expressed in, 
 Variables and their units
v0 is the initial velocity (I will express this in miles per hour, written as: 40 [mi/hr]
v is the final velocity: 60 [mi/hr] (this is the velocity at the end of the acceleration) 
vbar means the average velocity = (v0 + v)/2 = 50 [mi/hr]
a is the acceleration expressed as change in miles per hour, per second. This is actually a common 
way to express acceleration here in the U.S: Just think of the phrase: “from zero to 60 in 4 sec-
onds!”. This means that for every second, the miles per hour increases by 60/4 = 15 [mi/hr], So that 
at the end of 4 seconds, I am doing 60 mph, that is, 60 [mi/hr]. (Assuming I started from zero). If 
I had instead started at 40[mi/hr] and accelerated at 5 [mi/hr/sec] for 4 seconds, I would again reach 
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60 mph but be much less impressive. 
a = (v - v0) /t [miles per hour per second] (written as [mi/hr/sec]) the ‘per’ indicates the unit goes 
in the denominator. This is actually the definition for constant acceleration. For this example, since 
I have already assumed a starting and ending velocity, I can calculate acceleration as: 
60 [mi/hr] - 40[mi/hr])/4[sec] = 5 [mi/hr/sec], which just means that the Ferrari is gaining 5 mph 
every second. That is a ‘rate’. In the next figure I am going to show how all the quantities can be 
represented as products of a ‘rate’ times a time. That product will be the area of a rectangle that 
you can identify from the picture. 

Notice that Figure 1 expresses the velocity in terms of time, v[t] = v0 + a * t; This leads to the next 
diagram showing that the areas in figure 1 can also be thought of as integrals. 

v0 = 40[mi/hr]

v = 60[mi/hr]

v-v0
vbar = (v0+v)/2

t = 4 [sec] (same time scale for all of diagram)

=20 [mi/hr]

s2 = v0 * t = 40[mi/hr]*4[sec]

s1 = (v-v0)/2 * t 

= .011[mi] = 59 [ft]

 = .044[mi] = 235 [ft]

(this is the triangle area = distance

(this is the rectangle area = distance

FIGURE 1. Relating distance (s), to time (t), velocity (v), and acceleration (a). 

to acceleration or you can 

due to constant velocity)

= a * t/2 * t = 1/2 *a* t2

due 
=50[mi/hr]

S = v0 * t + 1/2 a * t 2
S = v0 * t + 1/2 * {a * t} * t (note that {v - v0} = a*t ) 

S = v0 * t + 1/2* {v-v0} * t (this expresses S in terms of two rectangles

S = vbar * t = (v0 + v)/2 * t (this is the overall rectangle representing distance covered) 

Exploring Distance = Rate * Time 

Equivalent Expressions for the Distance (S) as a function of Time, Velocity, and Acceleration

think of it as half the rectangle
(v-v0)* t)

= 20[mi/hr]/2*4[sec]

Note: the assumed values below on the left of the diagram, ‘a’ is constant

as a bonus, since t = (v-v0)/a, replace ‘t’ in the last equation to get:
v2 - v02 = 2 a * s (this connection is critical in expressing Kinetic Energy = 1/2 m v2)

a = 5 [mi/hr/sec]
= (v-v0)/t 
= (60-40)/4 
[mi/hr/sec]

s = vbar * t = s1 + s2
(this is the rectangle = distance
due to overall average velocity)

Velocity

Time 

(the diagram below is a velocity versus time plot)

Note that 
a is a slope,
which means a 
derivative!

0

this area is the distance
due to the constant
velocity of 40[mi/hr]

distance due to 
acceleration
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Finally, here is a picture of the distance directly as a function of time. It is actually a parabola but 
doesn’t bend much due to the small value of the acceleration term. 

 Yes, I See Where it is Now (at t = 0), but Where Was It Earlier?
So far, I have simply written the distance equation as depending on the initial velocity v0, and a 
constant acceleration, ‘a’, as below, where ‘s’ is the distance from an origin and depends on the 
time of travel. So I write s[t], meaning that ‘s’ depends on ‘t’:
s[t] = v0 * t + 1/2 a* t2

Notice that this equation assumes that when time = 0, I am starting at the origin. Suppose though, 
I am starting out at a distance of s0 from the origin when I start my stopwatch, How do I interpret 
the equation now?
So, let me change the above equation just a little to take this *enrichment into account and consider 
that I start off initially at some distance from my origin, say at s0 feet. The general equation of dis-
tance now looks like:

FIGURE 2. Expressing the areas of Figure 1 as integrals

s1 = ‡
0

4
v0 Åt = v0 ∗ t

s2 = ‡
0

4
a ∗ t Åt = 1ê 2 a∗t^2

s3 = ‡
0

4
vbar Åt = Hv + v0L ê2 ∗ t

(recall that the area of s1 was v0 * t) 

(remember that a = (v-v0) * t, so this is s2) 

(this comes from (v+v0)/2 * t and is the 
overall average velocity, so this is s)

1 2 3 4
t

50

100

150

200

250

s

s = v0*t + 1ê2 a t^2

FIGURE 3. s = v0*t + 1/2 a * t^2 Graph of distance as a function of time
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s[t] = s0 + v0* t + 1/2 a * t2

Let’s get specific using the values of the starting “Ferrari” example
v0 = 40 [mi/hr] = 58.7 [ft/sec]
a = 5 [ mi/hr/sec] = 7.33[ft/sec]
s0 = 100 [ft] (this is the new component of the equation and is the initial displacement from the 
origin)
The distance equation now appears as:
s[t] = 100[ft] + 58.7[ft/sec] * t[sec] + 1/2* 7.33[ft/sec/sec]] * t[sec]2

At what time will the distance be zero? Solving this quadratic equation will naturally yield two 
times that satisfy the equation, but what do those times mean?
The roots of this equation are:
t = -1.94 [sec] and t= -14.1[sec

 Plot of the New Distance Equation. 
Let me simply show a time versus distance picture of the s[t] equation, as below. The equation roots 
are at about -2 seconds and -14 seconds. The math doesn’t care what those numbers mean, only 
that they satisfy the equation. (Think of math as a “domain independent world view”). 
My interpretation is that my car starts at the origin at t= -2 seconds. Even though I started my watch 
at t=0, the car had started traveling earlier and had passed through the origin, s==0, at t = -2 sec-
onds. The question remains though, when did it initially start moving? Here is where my physical 
knowledge kicks in: The car started moving for the very first time when the velocity was zero and 
increased from there. To find that time I can look at my diagram below and pick out the time where 
the curve bottoms out, which is at t = -8 seconds, that’s when velocity is zero, that’s when the car 
started. 
So, my take on this equation is: my car initially started out 8 seconds (t= -8) before I started my 
stopwatch, passed through the origin (s==0) at t = -2 and when I actually started my stopwatch 
(t=0), it was 100 feet beyond the origin. 
Question: What do you make of the fact that there is another time at which the car (virtual?) passes 
through the origin? 
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 Motion Summary
Assuming constant acceleration, such as the example above or, say, the constant acceleration due 
to gravity, makes the equations of motion fairly easy to write down and to visualize. I have made 
a start here in describing the simpler equations of one dimensional motion. They boil down to an 
application of the basic idea that distance = rate * time. As an aside, the equation in the last line in 
Figure 1 on page 2 is very important in further studies of energy: v2 - v02 = 2 a s 
when multiplied by mass (m) and slightly re-arranged, it shows
1/2 *m * v2 - 1/2 *m *v02 = m * a * s = m * {( v - v0)/t} * {(v + v0)/2 * t }
The difference on the left is the change in Kinetic Energy, while the right hand side is Newton’s 
(net) force (m * a) through a distance expression (s). Force in the direction of motion for a given 
distance is work, which equals the change in Kinetic Energy.This is the Work - Kinetic Energy The-
orem. 
 Engineering/Physics use of Dimensional Analysis as an Important Advantage Over Pure Math
In the last section I point out a subtle feature of math equations, you need to interpret them! In that 
equation I talked about where the Ferrari was at negative times since I started the stopwatch, time 
= 0) when the car had already traveled 100 feet! Notice that putting the equations in the context of 
everyday experience helps a lot, especially including the dimensions of the equations. Dimensions 
tell me if I go wrong. That is, if the left side of the equation is in terms of feet, then every term on 
the right side must reduce to a dimension of feet. That’s one more advantage over a pure math ma-
nipulation which doesn’t have attached dimensions.

 Other Averages - Harmonic Means
Often you will need to calculate average rates over a given distance rather than average rates over 
a given time. That is, suppose you want to calculate an average rate for two cars that travel a dis-
tance of 120 miles at respective rates of 60 mph and 40 mph. Your first impulse to say, ( 60 + 40)/
2 = 50 mph, turns out to be wrong! That would work if they both traveled for the same amount of 
time, but that’s not the case here. 
However, your basic idea rate = distance/time still underlies the following analysis. The only dif-

FIGURE 4. Distance equation that starts the stopwatch (t=0) when car has already gone100 feet. 

s[t] = 100 + 58.6667 t + 3.66667 t2

-15 -10 -5
timeHsec L

-100

100

200

300
s=distance @ftD s[t]=

s = 0 at t= -1.93 [sec] and
s = 0 at t= -14.3[sec]
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ference is that now I will replace time by average time. Ok, here goes (note that distance is the fixed 
quantity in this derivation)- 
average rate (RBAR)= distance /(average time to travel that distance) 
let t1 (time) = distance/(rate of car 1) = 120 / 60 == 2 hours
let t2 (time) = distance/(rate of car 2) = 120/40== 3 hours
average time = (t1 + t2)/2 = ( 120/40+ 120/60) /2 = 2.5 hours
average rate (rbar)= 120 mi /[ ( 120/60 + 120/40)/2]= 1/[( 1/60 + 1/40)/2]= 48 mph

If you go on to study electronic circuits you will see this same idea when you calculate the average 
resistance of two resistors, R1, R2, in parallel. The analogy becomes that Resistance is the Rate of 
Dissipation of energy across the resistor leads. So Resistance takes on the role of a Rate. In this 
case the common factor is the same voltage (V) across both resistors. The analog becomes: Voltage 
== Distance, Current ==Time, and Resistance == Rate. 
Now the average can be computed as:
average resistance = voltage/(average current through the resistors) 
Suppose i1 is the actual current through R1, while i2 is the actual current through R2. 
average resistance = voltage / ( average current)
average current = (i1 + i2 )/2 = ( V/R1 + V/R2)/2
average resistance (Rbar) = V/ ((V/R1 + V/R2)/2 )
Rbar = 2 / (1/R1 + 1/R2) 
This technique works for any number of resistors in parallel. So, if I had three resistors in parallel, 
I would get an average resistance:
Rbar = 3 / ( 1/R1 + 1/R2 + 1/R2) 

 Torques about Axes and Torques about Planes
Chap 9 of Halliday, Systems of Particles, talks about finding the coordinates of the center of mass 
(CM). That is where all the mass may be considered to be concentrated. The CM motion is in turn 
determined by the (vector) summation of all external forces applied at that (virtual) point. That is, 
there may not be actual mass at that point as in a donut or a horseshoe. The coordinates of the 
center of mass, in 3D, may be calculated by considering the torque around each axis in turn. What 
I finally realized is that in 3D, the torques along an axis can be considered as turning a plane, with 
the normal to the plane being parallel to the axis along which the masses are hung. (I am using 
gravity as the intuitive turning force here, taking each axis in turn). 
For example,in the diagram “Torque due to hanging masses in a direction parallel to X axis” on 
page 7, the coordinates of the center of mass along the X axis depends on the distance, in the X 
direction, out from the Y-Z plane and the mass amount hung there! This displacement of the mass 
out from the Y-Z plane represents a turning motion imparted to the Y-Z plane. (assuming the active 
force here is gravity with masses hanging down from axes parallel ot the X axis. In that diagram, 
two masses are hanging along the X axis, m1 and m2. A third mass, m3, is hanging out from the 
Y-Z plane, at a distance which is parallel to the X-axis. That is, any distance out perpendicular from 
the Y-Z plane, puts me parallel to the X axis. I indicate this direction by a normal vector to the 
plane, n. So, a mass anywhere out from the Y-Z plane, can be considered as hanging down from 
a line ( parallel to the X axis) projecting out from that point. All of the torques due to m1, m2, and 
m3 then determine the X coordinate of the center of mass.
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To determine the Y coordinate of the center of mass, I consider the same masses now hanging 
down from the Y axis or an axis parallel to the Y axis some distance out from the X-Z plane. 

 2-D Motion [2011-03-06]
(Didn’t take the time to see where or if I had covered this, but was doodling with eqns from the Joy 
of Physics book and was playing with the eqns of motion again) Had a mini-micro realization about 
one of the factors in the derivation! 
By definition, starting out I know that (x - x0)/t = vbar, so not surprisingly, that turns up in the der-
ivations although Ididn’t see it early on. 
x - x0 = v0 *t + 1/2 a t^2, factoring out the ‘t’ I get 
x - x0 = t ( v0 + 1/2 a t) , but the last factor is actualy vbar! 
(x - x0)/t = ( v0 + 1/2 a t) // back to square zero since this RHS is vbar
Since:
v0 + 1/2 a t = v0 + 1/2 (v-v0), since a t IS v-v0 for constant ‘a’
and finally, v0 + 1/2 ( v -v0) == 1/2( v + v0) == vbar

 2-D Motion, finding the range of a parabolic trajectory
Continuing the doodling, if x0 = 0 and only gravity is at work, then a particle launched at an angle 
theta follows a parabolic path. Time is represented by the variable ‘t’. The range is the x value 
where the particle hits the ground again. It turns out that the equation describing this path is a pa-
rabola and is a quadratic in x, that is, it has two solutions since x appears to the second power. One 
solution, as we will see derived below, is that x== 0 is a possible range solution, but not too inter-
esting). The second solution shows that the range of travel of the particle, that is the x distance trav-

X

Y

Z

m1
m2

ǹ

m3

note , that ǹ is a normal vector
and is in X direction

FIGURE 5. Torque due to hanging masses in a direction parallel to X axis
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eled before it hits the ground again, depend on the launch velocity and the launch angle, just as you 
would expect. 
O.k., here is the derivation: note a curious but crucial fact of velocity, acceleration and forces -- 
then can be resolved into independent components along orthogonal axes. This makes solving a 
complicated 2-dimensional equation, equivalent to solving two 1-dimensional equations, as you 
will see below. “Divide and conquer”!
Let vx = v0 Cos[theta] be the initial X direction velocity. and vy = v0 Sin[theta] be the initial Y 
vertical launch velocity. theta is the launch angle. v0 is taken to be the speed of the launch (absolute 
value of the vector velocity) that can be broken down into two components, one along the X axis 
and the other along the Y axis, this is vx and vy.
(Up is plus and down is negative along the Y-axis which means that the direction of the gravity 
force is taken as down. Right is 
). Then the two equations are:
[1] x = vx * t // for the horizontal distance traveled in time ‘t’ ( it’s independent of the y motion)
[2] y = vy * t - 1/2 * g* t^2 // the minus is because the gravity force is taken as the minus direction.
then, solving for the ‘t’ in equation [1], and substituting into equation [2], I get: 
[3] y = vy * x/vx - 1/2 g (x/vx)^2 // this is a quadratic in x, which is a parabola in this case
To make this equation easier to work with, factor it into 2 components as in [4] 
[4] y = x/vx *( vy - 1/2 * g * x/vx)// two factors here, so setting y==0 means two equations to solve
The range is the corresponding x value such that y is back at ground level, that is, y ==0, so, set 
y== 0 and solve the quadratic [4]. Note, I have factored it so it is a bit easier to solve since y==0 
means that each factor could be zero. So this allows me to solve two easy equations, one equation 
for each factor. 
One factor says that y==0 when x/vx ==0 which means I didn’t move at all, and y is still zero. The 
solution is simply, x ==0. 
The second factor, when set to zero, has the interesting solution :
vy - 1/2 *g * x/vx ==0 
x = 2 * vx * vy /g
x = v0 * v0 * 2* Cos[theta] * Sin[theta]/g 
// there is a trig indentity that says that 2*Cos[theta]*Sin[theta] == Sin[ 2 theta], there is a deriva-
tion of this in another tutorial on the milagrosoft.com website, TrigBasics.pdf.
So finally, we can see that range depends on the square of the launch speed, as well as the angle. 
The maximum range is when Sin[ 2 theta ] ==1. This happens when theta = 45 degrees. 
C:\acbooks\QPack2008\BasicMathBasicPhysics.fm 3/6/11  8


	Basic Math/Basic Physics (* Draft 2011-03-06)
	Exploring Motion and Math (Distance = Rate * Time)
	Visualizing Distance in terms of Time, Velocity, and Acceleration
	Variables and their units
	FIGURE 1. Relating distance (s), to time (t), velocity (v), and acceleration (a).
	FIGURE 2. Expressing the areas of Figure 1 as integrals
	FIGURE 3. s = v0*t + 1/2 a * t^2 Graph of distance as a function of time


	Yes, I See Where it is Now (at t = 0), but Where Was It Earlier?
	Plot of the New Distance Equation.
	FIGURE 4. Distance equation that starts the stopwatch (t=0) when car has already gone100 feet.


	Motion Summary
	Engineering/Physics use of Dimensional Analysis as an Important Advantage Over Pure Math

	Other Averages - Harmonic Means
	Torques about Axes and Torques about Planes
	FIGURE 5. Torque due to hanging masses in a direction parallel to X axis
	2-D Motion [2011-03-06]
	2-D Motion, finding the range of a parabolic trajectory




