
Javadocing in Netbeans (rev. 2011-05-20)
Javadocing in Netbeans (rev. 2011-05-20)

This note describes how to embed HTML-style graphics within your Javadocs, if you are
using Netbeans. Additionally, I provide a few hints for package level and overview level
documentation and the role of the properties option within a Javadoc’ed project. This tuto-
rial was tested with Netbeans 6.8. [rob rucker 2010-07-13].
For Netbeans 6.9.1, the modification of the build.xml file is no longer necessary so that part
of the tutorial can be ignored. [2011-04-28]

 Overview
Displaying graphics is part of the general Javadoc documentation approach that supports
‘literate programming’. Our text books often don’t emphasize documentation except for
end of line comments embedded within code using ‘//’ or multiline comments using ‘/* . .
. */’. While that is o.k. for developers maybe, clients don’t want to have to read code to find
out how the program works. So, to find out how the program works, a higher level of doc-
umentation is called for. We need some automated support and that’s where Javadoc comes
in. The word Javadoc is the general term used to describe the process of creating and dis-
playing Java-based computer documentation. Creating the documentation depends on an
executable program, javadoc.exe, that goes through all your package files, extracts out Ja-
vadoc comments, creates corresponding formatted HTML pages, hyper links them, and
then automatically opens your browser to display them. This utility program is part of the
standard Java distribution and is always available for you to use.
As you will see later in this tutorial, Javadoc not only goes through the computer code and
extracts out distinguished comments, it also goes through specially named folders and files
and extracts additional text and graphics that are also displayed on the HTML pages.

 Procedure for Netbeans 6.8 only
(This glitch has been fixed in 6.9 so you don’t need to modify the build.xml file but do need
to do the other parts in this tutorial).
Currently, I don’t know of a built-in way to embed graphics inside of Javadocs, so here is
one way that does work: The problem is that the current versions of Netbeans don't auto-
matically copy graphics from your source directory to the 'dist' directory where javadoc
looks for data to insert into javadoc’s HTML output. So, below is a way to do this by a small
edit of the Ant build file (build.xml).
Below is a File view (not a Project view) of my project. (To get a File view, go to the main
menu->Files).
The example project, IT307Ch3DeitelGradeBook, presented here, is (edited) code taken
from the Deitel text chapter 3, which is being used for IT 307 and IT 408 during the 2010
sessions at WIU.

 Cut to the Chase for embedding graphics (a quick overview for all versions of
Netbeans)
Within the project’s package folder ‘demo’, I created the doc-files folder (a distinguished
 8/31/11 r.r 1

Javadocing in Netbeans (rev. 2011-05-20)

name you must use) and copied in a graphic, sunflower.jpg. Then, in the package.html (a
distinguished name for package level documentation) I inserted an callout for the
graphic sunflower.jpg. After a ‘Clean and Build” I ran the JavaDoc program and produced
the browser displayed documentation. All these files are shown below.

 End Cut to the Chase
Here is a File view of the overall project.

 Detailed Steps to Embed and Display Graphics within your JavaDocs
 Copy graphics files into your project (all NB versions)
Go to your project, then your package (my package name is 'demo').
1. create a new empty FOLDER inside your package. You must name it doc-files.
to create such a folder, right click on your package name -> new -> other ->folder
2. Copy your graphics into that folder. For example, I have put sunflower.jpg in my doc-

files folder. Actually, you can put anything you want in there since a (relative) hyper-
text link will retrieve it. I would also recommend placing a UML class diagram in the
folder as well, if you are able to create one.

 Edit the Build File (for NB 6.8 only)
Now go to the File view in your project, find the build.xml file, then right click ->open. This
will open the xml file in the editor panel of Netbeans.
Right at the bottom of the file, immediately before the ending </project> tag, insert the fol-
lowing code. Note: use your package name in place of my ‘demo’ package name if yours
differs.

<target name="-pre-compile">
 <copy todir="./dist/javadoc/demo/doc-files">
 <fileset dir="./src/demo/doc-files"/>
 </copy>
 </target>

FIGURE 1. File view of the IT307Ch3DeitelGradeBook project
 8/31/11 r.r 2

Javadocing in Netbeans (rev. 2011-05-20)

The effect of this Ant command is to copy the content of doc-files to the distribution folder
(‘dist’). This is where javadoc looks for included files and now they will be there.
Save the build.xml file.

 Insert callouts in your HTML documents. (all NB versions)
In your package.html file or in any of your source files javadoc sections, insert the follow-
ing standard HTML code to access your doc-file graphics content.
Below is the package.html special package level documentation file that documents my
demo package and the GradeBook suite of classes.
to create this HTML file, right click on your package name and navigate to find HTML File.
Click that.

 Do a 'Clean and Build' to establish new linkages.
Doing a Clean and Build is a good idea in general after you make a few code changes.

 Run -> Generate Javadoc
This invokes the javadoc.exe executable that is in your jdk 1.6 distribution bin directory.

FIGURE 2. package.html package level documentation file
 8/31/11 r.r 3

Javadocing in Netbeans (rev. 2011-05-20)
 Javadoc output
Running javadoc does a compile and then composes linked HTML files based on what is
in your javadoc comments. Then it automatically calls your browser (check your bottom
toolbar of programs since your browser icon may only show up there).

 Configuring your project to display private variables, titles and headers.
By default, javadoc will not show private variables or some of the @ parameters. So, do the
following.
Right click on your project name and scroll to the bottom of the options and choose prop-
erties. (see dialog box below)
Then click on Documenting and check everything, as well as entering title and header text.
As an aside, clicking on the Run option allows you to enter command line arguments that
are picked up in the String[] args array from the main() method.
 8/31/11 r.r 4

Javadocing in Netbeans (rev. 2011-05-20)

‘

 Documenting Individual Packages
To document a package level collection of files, say a package named ‘demo’, as in the
above example code, you place a specially named HTML file, package.html, in the package
folder. That package.html file contains text that will document the classes in the ‘demo’
package. If you want to produce graphics for that package, then you would create a doc-
files folder and place your graphics in there. Callouts for graphics use the standard HTML
tags, for example, here is callout from a Javadoc section of comments that will cause the
browser to get the jpg file referenced and insert it into the HTML page.

If you have a second package, named say, ‘otherDemo’, you would create another pack-
age.html file in that package folder that documents the classes in that package. For display-
ing graphics associated with the ‘production’ package, create another doc-files inside the
package folder and place graphic file there. (See “File view of the CST200Threads Project”
on page 6).

 Documenting Multiple Packages, the Overview of the Suite
Things get more interesting when you need to document multiple packages that represent
the overall suite. Now you want to document individual packages using a package.html file
in each package folder as well as, an overall descriptive HTML file for the collection of
packages. To create this overall documentation, create a specially named HTML file called
overview.html and place it in the <src> folder, as shown in the diagram below. (You need
to be in File view to see these files). <src> is the folder that holds all your packages.
 8/31/11 r.r 5

Javadocing in Netbeans (rev. 2011-05-20)
 Configuring Javadoc to Recognize the Location of overview.html
Go to your project properties dialog box and add in the following within the Additional Ja-
vadoc Options.

FIGURE 3. File view of the CST200Threads Project
 8/31/11 r.r 6

Javadocing in Netbeans (rev. 2011-05-20)
Configuring Javadoc to override the built-in CSS file javadoc.css
In the additional Javadoc Options as above, include the following (notice the placement of
the ‘periods’) :
-stylesheetfile ${basedir}/${src.dir}/style.css

And, I have named my css file style.css.
Place this file in your <src> folder.
Additionally, in my package and overview html files, I include a
<link href=”style.css” type = “text/css”, rel = “stylesheet” />

 Templates for Your Java Classes
Under Tools>Templates>Java>Java Class
Go to edit and replace the contents with the first section of code shown below.
Then go to Java Main Class Template and replace its contents with the respective code be-
low
Same for Interface Template
Java Templates

These templates will replace the ones in your Netbeans Tools Templates

files.
 8/31/11 r.r 7

Javadocing in Netbeans (rev. 2011-05-20)

r.r 2011-07-25

********************Java Class Template

/* ${package}.${name} by ${user} on ${date} */

<#if package?? && package != "">

package ${package};

</#if>

/**${name} shows ?? .

 *

 * @author ${user}

 * @version 1. 0 ${date}

 * @since jdk 1.6 upd 21

 * @see ""

 */

public class ${name}

{

}//end ${name}

***************************END Java Class Template

*****************************Java Main Class Template

/* ${package}.${name} by ${user} on ${date} */

<#if package?? && package != "">

package ${package};

</#if>

/**${name} shows ?? .

 * <p>

 *</p>

 * @author ${user}

 * @version 1. 0 ${date}

 * @since jdk 1.6 upd 21

 * @see ""

 */

public class ${name}

{

 public static void main(String[] args)

 {

 }//end main()
 8/31/11 r.r 8

Javadocing in Netbeans (rev. 2011-05-20)
}//end ${name}

*********************************END Java Main Class Template

******************************* Java Interface Class Template

/* ${package}.${name} (Interface class) by ${user} on ${date} */

<#if package?? && package != "">

package ${package};

</#if>

/**${name}

 *

 * @author ${user}

 * @version 1. 0 ${date}

 * @since jdk 1.6 upd 23

 * @see ""

 */

public interface ${name}

{

}//end ${name}

******************************* END Java Interface Class Template

 Summary
Documenting a program suite is considered an essential component of any client deliver-
able. Prior systems that had no built in documentation facilities, made this very difficult and
so not much was done without extreme effort. JavaDoc changes that. Now you know how
to document individual packages with both text and graphics, as well as document the col-
lection of packages making up the program suite. The resulting documentation is a major
attraction for clients.
 8/31/11 r.r 9

	Javadocing in Netbeans (rev. 2011-05-20)
	Overview
	Procedure for Netbeans 6.8 only
	Cut to the Chase for embedding graphics (a quick overview for all versions of Netbeans)
	End Cut to the Chase
	FIGURE 1. File view of the IT307Ch3DeitelGradeBook project

	Detailed Steps to Embed and Display Graphics within your JavaDocs
	Copy graphics files into your project (all NB versions)
	1. create a new empty FOLDER inside your package. You must name it doc-files.
	2. Copy your graphics into that folder. For example, I have put sunflower.jpg in my doc- files folder. Actually, you can put any...

	Edit the Build File (for NB 6.8 only)
	Insert callouts in your HTML documents. (all NB versions)
	FIGURE 2. package.html package level documentation file

	Do a 'Clean and Build' to establish new linkages.
	Run -> Generate Javadoc

	Javadoc output
	Configuring your project to display private variables, titles and headers.

	Documenting Individual Packages
	Documenting Multiple Packages, the Overview of the Suite
	FIGURE 3. File view of the CST200Threads Project
	Configuring Javadoc to Recognize the Location of overview.html

	Templates for Your Java Classes
	Summary

